anonymous
  • anonymous
integral from 0 to 6pi, 7theta^2(sin(1/12theta))dtheta
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
integration by parts pull out the constant 7 first u = x^2 dv = sin(x/12) du = 2xdx v = -12sin(x/12)
amistre64
  • amistre64
\[\int\limits_{0}^{6\pi} 7 \theta^2 \sin(\frac{1}{12} \theta) d \theta\] ??
amistre64
  • amistre64
or is that (7t)^2 ??

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
its right the first way u have it
dumbcow
  • dumbcow
= -12x^2cos(x/12) +24[integral xcos(x/12) dx] repeat integration by parts u = x dv = cos(x/12) du=dx v = 12sin(x/12)
amistre64
  • amistre64
if i gotta repeat integrations; i just make a table to keep them organized
anonymous
  • anonymous
if you express sin theta in eular's form then the integration will be easied
anonymous
  • anonymous
yeh, but no one wants complex numbers in the answer geezzz
amistre64
  • amistre64
v up ------------------------ u down | sin(t/12) ------------------------- + | t^2 | -cos(t/12) /12 ------------------------- - | 2t | -sin(t/12) / 144 ------------------------- + | t | cos(t/12)/ 144(12) ------------------------- 0 right?
amistre64
  • amistre64
not to forget the 7 tho lol
amistre64
  • amistre64
- 7t^2 cos(t/12) /12 + 14t sin(t/12) / 144 + 7t cos(t/12)/ 144(12) i think
dumbcow
  • dumbcow
amistre when you integrated the sin and cos, you multiplied the inside instead of dividing integral sin(ax) = -1/a*cos(ax) =7[-12x^2 cos(x/12) + 288x sin(x/12) + (24)(144)cos(x/12)]
amistre64
  • amistre64
still rusty at integration by parts; thnx :)
dumbcow
  • dumbcow
no problem table is good idea though
amistre64
  • amistre64
i seen the 12 and forgot it was a fraction :)
anonymous
  • anonymous
thanks guys :)
anonymous
  • anonymous
The derivative of \[7 \left(-1728 \left(-2+\frac{t^2}{144}\right) \text{Cos}\left[\frac{t}{12}\right]+288 t \text{Sin}\left[\frac{t}{12}\right]\right) \]is\[7 \left( 288 \text{ Sin}\left[\frac{t}{12}\right]+144 \left(-2+\frac{t^2}{144}\right) \text{Sin}\left[\frac{t}{12}\right]\right) \]simplified,\[7 t^2 \text{Sin}\left[\frac{t}{12}\right] \] The truth be told, I don't know how they did it.
anonymous
  • anonymous
can u find the answer to integral of e^(6x) cos(7x)
anonymous
  • anonymous
hold on.
anonymous
  • anonymous
\[\int\limits e^{6 x} \text{Cos}[7 x]dx = \frac{1}{85} e^{6 x} (6 \text{Cos}[7 x]+7 \text{Sin}[7 x])+c \]Does OK?
anonymous
  • anonymous
yes, thank u so much :)
anonymous
  • anonymous
You might consider buying a Student version of Mathematica 8 if you intend to pursue a scientific or math career. At least you can verify your answers.
anonymous
  • anonymous
there is wolframam alpha, google it, you can check answers on that for free

Looking for something else?

Not the answer you are looking for? Search for more explanations.