anonymous
  • anonymous
compute d^2/dx^2 at the point (4,2) x^2+y^2=20
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

amistre64
  • amistre64
is that our f(x) sitting there?
amistre64
  • amistre64
2x x' + 2y y' = 0 2x + 2y y' = 0 y' = -x/y
amistre64
  • amistre64
y'' = -1/y + y'x/y^2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
\[y'' = -\frac{1}{y} + \frac{{-x^2}}{y^3}\]
amistre64
  • amistre64
(x=4, y=2) y'' = -1/2 - 16/8
amistre64
  • amistre64
y'' = -32/8 = -4 perhaps?
amistre64
  • amistre64
thats wrong
anonymous
  • anonymous
why not 5/2?
amistre64
  • amistre64
-4/8 - 16/8 = -20/8 y'' = -5/2
amistre64
  • amistre64
i was gettin there, my head on holds so much at once lol
anonymous
  • anonymous
cool, thanks!
amistre64
  • amistre64
i was wondering if i could have done that from this step like this: 2x + 2y y' = 0 2 + 2y' + 2y y'' = 0 y'' = -2 -2(-x/y) -1 -(-x/y) -1 -(-2) ---------- = -------- = ------- = doesnt look like it 2y y 2
anonymous
  • anonymous
that looks more complicated, do you happen to also know about definite integrals?
amistre64
  • amistre64
i can do them with somewhat of skill and mostly luck ;)
amistre64
  • amistre64
definite integrals are integrating within an interval
anonymous
  • anonymous
lol okay, let's see how lucky you are, I'm about to post one =D
amistre64
  • amistre64
yay!!
anonymous
  • anonymous
okay, for some reason it won't let me ask a question like normal
amistre64
  • amistre64
refresh your browser
amistre64
  • amistre64
f5

Looking for something else?

Not the answer you are looking for? Search for more explanations.