anonymous
  • anonymous
I want to show that Nullspace (normed space) is a vector space. can someone help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
null spaces are defined reference to some linear transformation
anonymous
  • anonymous
yes. I mean a linear transformation on a normed vector space
anonymous
  • anonymous
so u want to show it a subspace?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes
anonymous
  • anonymous
the condition is, for x,y in space n a, b scalars ax+by must belong to the space...right?
anonymous
  • anonymous
i think so, if that is enough to show
anonymous
  • anonymous
\[x, y \in N\]
anonymous
  • anonymous
then \[T ( x )= T ( y ) = 0\]
anonymous
  • anonymous
T (ax + by) = a T(x) +bT(y) using the linarity
anonymous
  • anonymous
T (ax + by) = a T(x) +bT(y)=0 showing that ax + by is in N
anonymous
  • anonymous
so N is the vector subspace

Looking for something else?

Not the answer you are looking for? Search for more explanations.