anonymous
  • anonymous
What is the sum of the real solutions to x^(logx) = (x^3)/100 ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
first take the log of both sides to get the variable out of the exponent. \[log(x^{log(x)})=log(\frac{x^3}{100})\] then use the properties of logs so put everything on the ground floor. \[log(x)log(x)=log(x^3)-log(100)=3log(x)-2\] hope it is clear than log(100)=2 since 10^2=100 \[(log(x))^2=3log(x)-2\] now you have a quadratic equation (in log(x) so set = 0 and solve \[(log(x))^2-3log(x)+2=0\] this one factors. \[(log(x)-2)(log(x)-1)=0\] two solutions are \[log(x)=2\] and \[log(x)=1\] now find x \[x=10^1\] \[x=10^2=100\] total is 110
anonymous
  • anonymous
Thanks, I remember learning this in the beginning of the year now!

Looking for something else?

Not the answer you are looking for? Search for more explanations.