anonymous
  • anonymous
find the maclaurin series in closed form of f(x)=1/sqrt(1-x)
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
find the maclaurin series in closed form of f(x)=1/sqrt(1-x)
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
mclaurin series is just taylor series expanded at 0 general formula is \[f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(0)}{3!}x^3 + ...+\frac{f^n(0)}{n!}x^n + ...\] so you need successive derivatives evaluated at 0 \[\frac{1}{\sqrt{1-x}}=(1-x)^{-\frac{1}{2}}\] successive derivatives look like \[-\frac{1}{2}(1-x)^{-\frac{3}{2}}\] \[\frac{3}{4}(1-x)^{-\frac{5}{2}}\] \[-\frac{15}{8}(1-x)^{-\frac{7}{2}}\] \[\frac{7\times 5 \times 3}{2^4}\] of course if you plug in 0 you just get the coefficients so they are \[1\] \[-\frac{1}{2}\] \[\frac{3}{4\times 2!}=\frac{3}{2^3}\] \[-\frac{15}{8\times 3!}=-\frac{5}{2^4}\] \[\frac{7\times 5\times 3}{2^44!}\] i think it should be possible to get a formula out of the pattern but be careful

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.