At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

yeh, its very similar to all questions asked one
use pronumerals to represent unknowns

let the first speed be x

then distance = rate x time

time = distance/rate

\[\frac{34}{x} + \frac{6}{x-5} = 3\]

solve for x,

this gives 2 solutions
x= 3.94 and x= 14.4

therefore x=14.4mph is the speed for first section , and 9.4mph is the speed for the second section

\[\sqrt{9x+67}=x+5\]

what ?

I need to solve....well see what the heck I did wrong anyway..

square both sides
9x + 67 = x^2 +10x +25
x^2 +x +25-67 =0
x^2 + x -42=0
(x+7)(x-6) =0

x=6, x=-7
but check your solns

x=-7 doesnt work, so x=6 is only soln

ok so one more if you have time?

might as well, shouldnt take long

\[(x+\sqrt{3}) ( x-6\sqrt{3}) =0\]

expand

x^2 -6sqrt(3)x +sqrt(3)x -6sqrt(3)sqrt(3) =0 \[x^2 - 6\sqrt{3}x - 18 =0 \]

wait no

\[x^2 -5\sqrt{3}x -18 =0 \]
thats it

ok..thanks:)