complete the following integral or partial substitution with x tanx dx

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

complete the following integral or partial substitution with x tanx dx

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

use integration by parts u = x dv = tanx du =dx v = -ln|cosx|
wait nevermind that wont work i dont know if this has a simple anti-derivative
Do integration by parts, Take the derivative of x and integral of tanx =\[x \log|secx| - \int\limits_{}{}tanx\] =log|secs|(x-1)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

That should be secx*
Sorry did a mistake, its not that simple, will think on it!
= uv - integral v du so now all thats left is finding integral of ln(secx)
let u= sec(x) , du = sec(x)tan(x) dx --> dx = du/ sec(x)tan(x)
so integral ln(u) du / sec(x) tan(x) = \[\frac{ \ln(u) du }{u \sqrt{u^2-1}} \]
yes , hmm, I dont think you can go anywhere there

Not the answer you are looking for?

Search for more explanations.

Ask your own question