anonymous
  • anonymous
complete the following integral or partial substitution with x tanx dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
use integration by parts u = x dv = tanx du =dx v = -ln|cosx|
dumbcow
  • dumbcow
wait nevermind that wont work i dont know if this has a simple anti-derivative
anonymous
  • anonymous
Do integration by parts, Take the derivative of x and integral of tanx =\[x \log|secx| - \int\limits_{}{}tanx\] =log|secs|(x-1)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
That should be secx*
anonymous
  • anonymous
Sorry did a mistake, its not that simple, will think on it!
anonymous
  • anonymous
= uv - integral v du so now all thats left is finding integral of ln(secx)
anonymous
  • anonymous
let u= sec(x) , du = sec(x)tan(x) dx --> dx = du/ sec(x)tan(x)
anonymous
  • anonymous
so integral ln(u) du / sec(x) tan(x) = \[\frac{ \ln(u) du }{u \sqrt{u^2-1}} \]
anonymous
  • anonymous
yes , hmm, I dont think you can go anywhere there

Looking for something else?

Not the answer you are looking for? Search for more explanations.