anonymous
  • anonymous
the value of tan(2tan^-1 (1/5)-pi/4) is?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Let\[\theta=2\tan^{-1} (1/5)-(\pi/4)\]Form a triangle with tan theta
anonymous
  • anonymous
how?
anonymous
  • anonymous
How what?!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
wrong!
anonymous
  • anonymous
let x= \[\tan^{-1} \frac{1}{5}\]
anonymous
  • anonymous
so our expression becomes \[\tan(2x-\frac{\pi}{4})\]
anonymous
  • anonymous
now apply difference of angle formula
anonymous
  • anonymous
\[\tan(A-B) = \frac{\tan(A)-\tan(B) } {1+\tan(A)\tan(B) } \]
anonymous
  • anonymous
so we get
anonymous
  • anonymous
\[\frac{\tan(2x) -1}{1+\tan(2x)} \]
anonymous
  • anonymous
but ,\[\tan(2x) = \frac{\sin(2x)}{\cos(2x)} = \frac{2\sin(x)\cos(x)}{\cos^2(x)-\sin^2(x)} \]
anonymous
  • anonymous
now, we go back to our substitution x= tan^-1(1/5) take tan of both sides , and we get tan(x) = 1/5 now we can draw up a general right angle triangle and mark an angle x , and fill in the lengths 1 and 5 for thre opposite and adjacent sides respectively remember tan = opposite/adjacent
1 Attachment
anonymous
  • anonymous
note the hypotenuse is sqrt(26)
anonymous
  • anonymous
now from that triangle we can find the value of sin(x) and cos(x) , the then you just plug them into the expression we had above
anonymous
  • anonymous
so \[\sin(x) = \frac{1}{\sqrt{26}}\] \[\cos(x) = \frac{5}{\sqrt{26}}\] just by using the definitions
anonymous
  • anonymous
so , our whole expression was\[\tan(2x- \frac{\pi}{4}) = \frac{ \frac{ 2\sin(x)\cos(x) }{\cos^2(x)-\sin^2(x) } -1}{ 1+ \frac{2\sin(x)\cos(x)}{\cos^2(x)-\sin^2(x)}}\]
anonymous
  • anonymous
then sub in the values for sin(x) and cos(x) above, and simplify
anonymous
  • anonymous
you can do that
anonymous
  • anonymous
good. it worked out well. thanx man!

Looking for something else?

Not the answer you are looking for? Search for more explanations.