anonymous
  • anonymous
a ball thrown vertically upwards from level ground is observed twice, at a height H above the ground, within a time interval t.The initial velocity of the ball was a. \[\sqrt{8gH+g ^{2}t ^{2}}\] b. \[\sqrt{8gH+\left( gT/2 \right)^{2}}\] c.\[1/2\sqrt{8gH+g ^{2}t ^{2}}\] d. \[\sqrt{8gH+4g ^{2}t ^{2}}\]
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Here is one way to solve it. First we find the maximum height of the ball by the energy principle: \[mgh_{\max}= \frac{1}{2}mv_0^2 \Leftrightarrow h_{\max}= \frac{v_0^2}{2g}\] Then let's denote the distance the ball has dropped from its highest point (after time t/2) with d, and therefore \[d+H=h_{\max}\Leftrightarrow d=h_{max}-H\] Because the trajectory is symmetric, we can write \[d=\frac{1}{2}g(\frac{t}{2})^2\] and \[ h_{max}-H=\frac{1}{2}g(\frac{t}{2})^2 \] \[ \frac{v_0^2}{2g}-H=\frac{1}{2}g(\frac{t}{2})^2 \] from which we can solve \[v_0=\sqrt{\frac{1}{4}(gt)^2+2gH}=\frac{1}{2}\sqrt{(gt)^2+8gh}\] which is answer number c.
anonymous
  • anonymous
tnx a lot linjaaho !!

Looking for something else?

Not the answer you are looking for? Search for more explanations.