anonymous
  • anonymous
Consider the linear transformation T: C^2-> C^2 given by T(z,w,)=(2z,z+w). Find the eigenvalues and eigenvectors for T.
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

nowhereman
  • nowhereman
Look at the characteristic polynomial to find the eigenvalues. Then solve for each ev λ the linear equation Tx = λx.
anonymous
  • anonymous
Well in this case the matrix is \[(2 & 0 \ 1 & 1)\]. So the characterestic poly is \[(2-\lambda)(1-\lambda) = 0\]. You wil get \[2\lambda^ 2 \]. Solve for \[\lambda\] to get the eigenvalues.

Looking for something else?

Not the answer you are looking for? Search for more explanations.