trapezoidal rule

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

trapezoidal rule

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

solve: \[\int\limits_{9}^{16}\sqrt{x}\]
this is my approach but its not getting me the right answer: \[\int\limits_{9}^{16{x}}\sqrt{x}\approx \int\limits_{9}^{10}\sqrt{x}+ \int\limits_{10}^{11}\sqrt{x}+\int\limits_{11}^{12}\sqrt{x}+\int\limits_{12}^{13}\sqrt{x}+\int\limits_{13}^{14}\sqrt{x}+\int\limits_{14}^{15}\sqrt{x}+\int\limits_{15}^{16}\sqrt{x}\]
\[\approx 1/2(3+\sqrt{10}) + 1/2(\sqrt{10}+\sqrt{11}) + 1/2(\sqrt{11}+\sqrt{12}) + 1/2(\sqrt{12}+\sqrt{13}) + 1/2(\sqrt{13}+\sqrt{14}) + 1/2(\sqrt{14}+\sqrt{15}) +1/2(\sqrt{15}+4)\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Hi and, please write down the problem.
solve using the trapezoidal rule: \[\int\limits_{9}^{16}\sqrt{x}\] rounding to three significant figures
into how many sub intervals?
my answer is 20.9 and the answer in the text book is 27.9
i dont know where i went wrong this time
8 sub intervals
sorry 7 intervals
I got 24.66 http://www.wolframalpha.com/input/?i=%281%2F2%29%28sqrt%289%29%2B2sqrt%2810%29%2B2sqrt%2811%29%2B2sqrt%2812%29%2B2sqrt%2813%29%2B2sqrt%2814%29%2B2sqrt%2815%29%2Bsqrt%2816%29%29
Could you post the complete question exactly like what you have on your book?
ok one second
(a)complete this table of values for the function\[y=\sqrt{x}\] x 9 10 11 12 13 14 15 16 y (b) use the trapezoidal rule with the eight function values above to estimate \[\int\limits_{9}^{16}\sqrt{x} \] give your answers correct to three significant figures
wait you answer is right lol i rechecked the answer its 24.7
:D
sorry lol can u see where i went wrong
I am not sure, but it seems you forgot to add one of the expression when you plug in into your calculator.
ok ill try it out again
lol your right i left out one expression its 1 o clock in the morning lol im doing alot of stupid mistakes

Not the answer you are looking for?

Search for more explanations.

Ask your own question