anonymous
  • anonymous
Integrate sqrt{5sin^{2}(2t)} from 0 to pi
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
watchmath
  • watchmath
\(\sin^2(t)=\frac{1}{2}(1-cos(2t))\) So \(\int 5\sin^2(2t)\,dt=\int \frac{5}{2}(1-\cos(4t))\,dt=\frac{5}{2}t-\frac{5}{8}\sin(4t)+C\)
watchmath
  • watchmath
Oh sorry this is a definite integral... so just plugin the limits of integration :).
anonymous
  • anonymous
How did you eliminate the square root?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

watchmath
  • watchmath
I am sorry, I didn't see the square root ... :)
watchmath
  • watchmath
Ok, then it is simply the integral \[\sqrt{5}\int_0^\Pi \sin(2t)\,dt\] I believe you can do this integral now :).
watchmath
  • watchmath
Sorry ... I made a mistake
watchmath
  • watchmath
Over the interval \([0,\pi]\) the function \(\sin(2t\) is above the \(t-axis\) on \([0,\pi/2]\) and below the \(t\)-axis on \([\pi/2,\pi]\). So \(\sqrt{5\sin^2{2t}}=\sqrt{5}\sin{2t}\) on \([0,\pi/2]\) and equal to \(-\sqrt{5}\sin(2t)\) on the interval \([\pi/2,\pi]\). So the integral si equal to \[ \int_0^{\pi/2} \sqrt{5}\sin(2t)\,dt-\int_{\pi/2}^{\pi} \sqrt{5}\sin(2t)\,dt\]
anonymous
  • anonymous
Thank you so much, this is the part I was missing.

Looking for something else?

Not the answer you are looking for? Search for more explanations.