coverics at (3,7) and (3,-1) major axis of length 10 and can u show me how u did this

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

coverics at (3,7) and (3,-1) major axis of length 10 and can u show me how u did this

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

coverics?
covertices
vertices; is this ellipse or hyperbola?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

ellipse
cant really determine an ellipse from just this info.... at best I can do is: (x-3)^2 (y-3)^2 ------ + ------ = 1 b^2 16
without knowing a focus; or eccentricity; there is no solid way to determine the 'b' value
ok
i got it
yes there are infinitely many ellipses with major axis 10 and those vertices
wait nevermind that
there's only one it has minor axis 6
vertics at (-4,9) and (-4,-3), Covertices at (-7,3) and (-1,3)
and cam u show me how u got that
thant is a question
can u help me with that
you look at the distance between vertices to find the axis lengths
-7-1=6 and 9-(-3)=12
the center is (-4,3)
you can get your equation from that. (x+4)^2/(9)+(y-3)^2/(36)
=1
8x^2+y^2-48+4y+68=0
write the equation in standard form

Not the answer you are looking for?

Search for more explanations.

Ask your own question