A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 5 years ago

how do i find a recursively occuring geometrical sequence

  • This Question is Closed
  1. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    If we looked at a sequence like bn = 1, 3, 9, 27, 81, 243, . . . this would not fit our definition of an arithmetic sequence. We are not adding the same number to each term. However, notice that we are multiplying each term by the same number (3) each time. When you multiply every term by the same number to get the next term in the sequence, you have a geometric sequence. Geometric sequences can also be written in recursive form. In this case, we would write . Remember that in the language of sequences we are saying, to find any term in the sequence (bn), multiply the previous term (bn-1) by 3.

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.