anonymous
  • anonymous
divide (10-6i)/(2+3i) a.12/13+42/13i b.2/13-42/13i c.5-2i d.3
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\frac{10-6i}{2+3i}=\frac{10-6i}{2+3i}\times \frac{10-6i}{2-3i}\]
anonymous
  • anonymous
Multiply the conjugate of the denominator with the numerator and the denominator
anonymous
  • anonymous
denominator is \[2^2+3^2=4+9=13\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ooops typo my mistake sorry.
anonymous
  • anonymous
2(5-3i) / (2 +3i) i don't know whats next
anonymous
  • anonymous
\[\frac{10-6i}{2+3i}\times \frac{2-3i}{2-3i}\]
anonymous
  • anonymous
denominator is 13 numerator is \[(10-6i)(2-3i)=2-42i\]
anonymous
  • anonymous
so you get \[\frac{2-42i}{13}=\frac{2}{13}-\frac{42}{13}i\] in standard form
radar
  • radar
38-41i ------- 13
anonymous
  • anonymous
radar -30-12=-42 i think
radar
  • radar
Yes, I see that I erred. Lost track of signs lol
anonymous
  • anonymous
and \[-6 \times (-3)=+18\] making the real part 20-18=2
radar
  • radar
I totally agree satellite, please excuse my mistake Adam12.
radar
  • radar
Looks like choice B is the best one.

Looking for something else?

Not the answer you are looking for? Search for more explanations.