watchmath
  • watchmath
Repost problem: Compute \[\lim_{n\to\infty}\frac{1}{\sqrt{n}}(1+\frac{1}{\sqrt{2}}+\cdots +\frac{1}{\sqrt{n}})\]
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

amistre64
  • amistre64
the limit of a geometric series eh....
watchmath
  • watchmath
hmm not quite ... :D
anonymous
  • anonymous
It's not a geometric series.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
i was close tho lol just started reading up on these things :)
anonymous
  • anonymous
I'll give you a hint and you can tell me if you want more info (I'll check back later). Hint: Think of it as an expression of a Riemann sum, try to figure out which one.
anonymous
  • anonymous
By the way, the limit is 2. Not that the actual limit really matters....
watchmath
  • watchmath
Ok, \(2\cdot x^{1/2}\mid_0^1=2\). Thanks :D.
anonymous
  • anonymous
Yup! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.