watchmath
  • watchmath
Repost problem: Compute \[\lim_{n\to\infty}\frac{1}{\sqrt{n}}(1+\frac{1}{\sqrt{2}}+\cdots +\frac{1}{\sqrt{n}})\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
the limit of a geometric series eh....
watchmath
  • watchmath
hmm not quite ... :D
anonymous
  • anonymous
It's not a geometric series.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
i was close tho lol just started reading up on these things :)
anonymous
  • anonymous
I'll give you a hint and you can tell me if you want more info (I'll check back later). Hint: Think of it as an expression of a Riemann sum, try to figure out which one.
anonymous
  • anonymous
By the way, the limit is 2. Not that the actual limit really matters....
watchmath
  • watchmath
Ok, \(2\cdot x^{1/2}\mid_0^1=2\). Thanks :D.
anonymous
  • anonymous
Yup! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.