anonymous
  • anonymous
how do you integrate t times e to the negative t? (te^-t)?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
by parts
anonymous
  • anonymous
(te^-t) just and one to 1then put te over -t+1 te^-t+1/-t+1
anonymous
  • anonymous
\[t e ^{-1/}/-1 +\int\limits e^t dt\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
very carefully; you dont wana scare it
anonymous
  • anonymous
\[-t/e^t+ e^t +C\]
amistre64
  • amistre64
parts is good ..... e^-t +t -e^-t -1 e^-t +0 ............. right?
amistre64
  • amistre64
-t e^-t + e^-t + C ??
anonymous
  • anonymous
so u=t? and dv=e^-t?
anonymous
  • anonymous
oh missed it :)
amistre64
  • amistre64
yes
anonymous
  • anonymous
so is v=-e^-t?
anonymous
  • anonymous
\[\int\limits_{}^{}te^{-t}dt=-te^{-t}+\int\limits_{}^{}e^{-t}dt=-te^{-t}-e^{-t}+C\]
anonymous
  • anonymous
u=t, du=1 dv=e^-t, v=-e^-t
amistre64
  • amistre64
Lets see if this reverts back... Dt(-t e^-t + e^-t + C) t e^-t - e^-t e^-t (t-1) ... not quite, unless i forgot how to do that too ;)
anonymous
  • anonymous
thanks i got it :)
amistre64
  • amistre64
yay!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.