A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

anonymous

  • 5 years ago

How do you simplify 5x^-3y^0 with no zero, negative, or factional exponents?

  • This Question is Closed
  1. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    is this what you want to reduce: \[5x ^{-3y ^{0}}\]

  2. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    The y is not part of the power

  3. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[5x ^{-3}y ^{0}\] ?

  4. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Yes

  5. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    y^0=1, 5x^-3 =5/(x^3) so we have: \[5/x ^{3}\]

  6. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    any number to the 0 power is 1, and a negative exponent is the same as one divided by the positive exponent. x^-a=1/(x^a)

  7. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Thanks dude + medal.

  8. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.