anonymous
  • anonymous
solve the initial value problem du/dt = (t+1)/sqrt(t); u(1) = 4
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
\[\int\limits_{} \frac{t+1}{\sqrt{t}} dt\]
amistre64
  • amistre64
split the fraction in two and work each side
amistre64
  • amistre64
{S} t.(t^-1/2) + t^(-1/2) dt {S} t^(1/2) + t^(-1/2) dt

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
t^(3/2) t^(1/2) ----- + ------ + C 3/2 1/2
amistre64
  • amistre64
when t = 1; this should equal 4 according to the initial condition
amistre64
  • amistre64
2/3 + 2 +C = 4 8/3 +C = 4 C = 4 - 8/3 = -16/3 if i did it right
amistre64
  • amistre64
\[\frac{2t^2}{3}+\frac{2\sqrt{t}}{1}-\frac{16}{3}\]
anonymous
  • anonymous
ahh thanks a ton. i was WAY overthinking it. used to other profs who constantly used all kinds of tricks and stuff so i was looking for something way more complicated. thanks again.
anonymous
  • anonymous
though solving for c = 4/3, but otherwise it's golden
amistre64
  • amistre64
:) youre welcome
amistre64
  • amistre64
yeah, the integrating i can do.... addition? nah lol
anonymous
  • anonymous
haha it's cool. i'm usually the same way- just apparently brain dead tonight

Looking for something else?

Not the answer you are looking for? Search for more explanations.