anonymous
  • anonymous
Determine if \[\sum_{n=1}^{\infty} (-1)^n \left( \frac{n^n}{n!} \right)\] diverges, converges conditionally or converges absolutely.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
watchmath
  • watchmath
Use ratio test.
watchmath
  • watchmath
\(|a_{n+1}/a_n|=\frac{(n+1)^{n+1}n!}{(n+1)!n^n}=(\frac{n+1}{n})^n=(1+\frac{1}{n})^n\) The limit is \(e\). So the series diverges.
anonymous
  • anonymous
Thanks :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
So this is what I did: \[\lim_{n\to\infty}\left|\frac{\frac{(-1)^{n+1}(n+1)^{n+1}}{(n+1)!}}{\frac{(-1)^{n}n^{n}}{n!}}\right|\]\[\lim_{n\to\infty}\left|\frac{(-1)^{n+1}(n+1)^{n+1}n!}{(-1)^{n}n^{n}(n+1)!}\right|\]\[\lim_{n\to\infty}\left|\frac{(n+1)^{n}}{n^{n}}\right|\]\[\lim_{n\to\infty}\left|\left(\frac{n+1}{n}\right)^{n}\right|\] How do I continue?
watchmath
  • watchmath
Yes, now \(\frac{n+1}{n}=1+\frac{1}{n}\)
anonymous
  • anonymous
Would you mind giving a detail of how to factor that?
anonymous
  • anonymous
Oh, it should've been obvious :D \[\frac{n}{n}+\frac{1}{n}\] So you remove the absolute value just for the fact that \[n\to\infty\]
watchmath
  • watchmath
Since \(n>0\) the expression \(1+\frac{1}{n}\) is positive. So we don't need absolute value.
anonymous
  • anonymous
Then you apply L'hopital correct?
watchmath
  • watchmath
yes you may. But actually that is how we usually define the natural number \(e\).
anonymous
  • anonymous
Ah OK, if you remember the formula. Awesome, thanks again.

Looking for something else?

Not the answer you are looking for? Search for more explanations.