anonymous
  • anonymous
Convert to polar form: \[4x^{2}-5y^{2}-36y-36=0\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
x=rcos(theta) y=rsin(theta) substitute.
anonymous
  • anonymous
So I began with:\[4(r\cos\theta)^{2}-5(r\sin\theta)^{2}-36(r\sin\theta)=36\]and end up with:\[r\left[(4-9\sin^{2}\theta)r-36\sin\theta\right]=36\] Is this correct? If yes, what is next?
anonymous
  • anonymous
Help please!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

watchmath
  • watchmath
I show your update on my website. Let me just answer you here. \(4r^2\cos^2\theta-5r^2\sin^2\theta-36r\sin\theta-36=0\) Well actually if you just answer this then nobody can say that this is wrong.
watchmath
  • watchmath
show = saw
anonymous
  • anonymous
Thank you. But the problem is the answer is multiple choice, and the options are: \[A)\quad r=\frac{-4}{1+\sin\theta}\]\[B)\quad r=\frac{-4}{1+\cos\theta}\]\[C)\quad r=\frac{6}{1-\sin\theta}\]\[D)\quad r=\frac{6}{2-3\sin\theta}\]\[E)\quad None\;of\;the\;above.\]
anonymous
  • anonymous
So I put all of these equations on wolframalpha.com and the one that is correct is D. Does anybody know how to get there?
myininaya
  • myininaya
i did it watchmath :) come grade me :) when you get a chance
watchmath
  • watchmath
The answer is D From above we have \(4r^2\cos^2\theta-5r^2\sin^2\theta-36r\sin\theta-36=0\) \(4r^2\cos^2\theta=5r^2\sin^2\theta+36r\sin\theta+36\) \(4r^2\cos^2\theta+4r^2\sin^2\theta=9r^2\sin^2\theta+36r\sin\theta+36\) \(4r^2(\cos^2\theta+\sin^2\theta)=(3r\sin\theta+6)^2\) \(4r^2=(3r\sin\theta+6)^2\) \(2r=3r\sin\theta+6\) \((2-3\sin\theta)r=6\) \(r=\frac{6}{2-3\sin\theta}\).
anonymous
  • anonymous
Thank you. I really appreciate your generosity in answering so many questions. Do you mind if I ask you what motivates you?

Looking for something else?

Not the answer you are looking for? Search for more explanations.