conjugate of 1 - √3

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

conjugate of 1 - √3

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[1+\sqrt{3}\]
so conjugate means nothing but the opposite???
opposite only for the second term

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so what do you do when you rationalize? the denominator?
you would use the conjugate to rationalize the denominator in a rational function -- meaning a fraction so for example x/(x+3) this fraction would be undefined at -3...but if you multiply by the conjugate top and bottom (x-3)/(x-3) which is a sneaky way of multiplying by one depending on what is really in the numerator it can help cancel out terms ...so far from what I have seen it is used mostly for limit problems\[\lim_{x \rightarrow 4} (\sqrt{x})-2/(x-4)\]
okay i understand

Not the answer you are looking for?

Search for more explanations.

Ask your own question