I'm struggling with an inverse laplace transform: 1/((s^2+1)^2) What I'd normally do is to use the convolution theorem, and get y(t)=sin^2(t), but I'm being a bit of a retard, and can't seem to get my answer to fit with the suggested solution.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I'm struggling with an inverse laplace transform: 1/((s^2+1)^2) What I'd normally do is to use the convolution theorem, and get y(t)=sin^2(t), but I'm being a bit of a retard, and can't seem to get my answer to fit with the suggested solution.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

inverse laplace of \[1\div(s ^{2}+1)\] is sint using convolution we need to find \[\int\limits_{0}^{t} siny \sin(t-y) dy\]
sinAsinB = 1/2[cos(A - B) - cos(A + B)]
As I suspected, I'm a retard. I forgot to calculate the convolution after I had found the inverse transform. Thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

welcome

Not the answer you are looking for?

Search for more explanations.

Ask your own question