f(x)=x^2*e^(-|x|) how can i solve the integral?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

f(x)=x^2*e^(-|x|) how can i solve the integral?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

i now there are some representations of e^x that cant be integrated.... forget why..
but for this; just int by parts using x^2 as u; and v as e^...
Yes, but how i deal the absolute value?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

an absolute value is always positive; and the opposite of an always positive value is always negative right?
just redefine it; |x| = a perhaps
Shouldn't i divide the integral into two cases? |x| = x if x>0 and |x| = -x if x<0?
http://www.analyzemath.com/calculus/Differentiation/absolute_value.html
Yeah, I think that's the way you have to go.
Is this a definite integral or indefinite?
The exercise is to solve the integral from -inf to inf
That makes a difference \(\int_{-\infty}^\infty x^2e^{-|x|}=2\int_0^\infty x^2e^{-x}\,dx\) and you can use integration by parts.
thats what I had in mind :) just couldnt spell it out well enough ...

Not the answer you are looking for?

Search for more explanations.

Ask your own question