find the limit as x -->2 7/x-2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the limit as x -->2 7/x-2

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

would it be 0/0 or undefined
equation is 7/x-2
you can also find the limit by derivating the numerator and denominator the derivatives of 7 is 0 and the derivatives of x-2 is 1 therefore the limit would be 0/1 = 0

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

IF you're asking about \[\lim_{x \rightarrow 2}{7 \over x-2}\], then you can notice that when substituting \(x=2\), we get a \(0\) at the denominator. Therefore, the limit is undefined and goes to \(\infty\) as x approaches \(2^+\) and \(-\infty\) as x approaches \(2^-\).
AnwarA has the correct approach. So in this case, L'Hopital's rule can't be used to evaluate the limit, as the third post states.

Not the answer you are looking for?

Search for more explanations.

Ask your own question