I have a distance problem and I know the equation is d=rt. I'm just not sure how to solve the problem: A flight crew flew 420 km in 3 h with a tailwind. Flying against the wind, the flight crew flew 440 km in 4 h. Find the rate of the flight crew in calm air and the rate of the wind

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I have a distance problem and I know the equation is d=rt. I'm just not sure how to solve the problem: A flight crew flew 420 km in 3 h with a tailwind. Flying against the wind, the flight crew flew 440 km in 4 h. Find the rate of the flight crew in calm air and the rate of the wind

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Well, assume that the tail wind adds some amount (x) to the rate.
So instead of the normal equation you have d = (r+x)t for flying with a tailwind, and d = (r-x)t for flying against the wind. Then solve for r and x.
you could try this. the speed with the tail wind is \[\frac{420}{3}=140\] so with the the tailwind they are going 140 kph and against the wind it is \[\frac{440}{4}=110\] kph then as popak said, the first speed going is r + x and the speed returning is r - x so \[r+x=140\] and \[r-x=110\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question