Find the volume of the solid generated by revolving the region bounded by: \[(x-h)^2+y^2=r^2,\quad(h>r)\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the volume of the solid generated by revolving the region bounded by: \[(x-h)^2+y^2=r^2,\quad(h>r)\]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

We revolve around which axis (line) ?
Sorry, y-axis
Use cyllindrical shell method. The volume is given by the following integral \[2\int_{h-r}^{h+r}2\pi x\sqrt{r^2-(x-h)^2}\,dx\] You can use substitution \(x-h=r\sin\theta\) to compute the integral.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

watchmath, thank you for the hint, do you mind helping me out in the end? I end up with: \[4\pi\cos\theta\left[2hr+r^{2}\right]\]is this correct?
Honestly I don't know. You can double check your answer with wolframalpha computation :D.
the answer should no depends on theta. Maybe you forgot to plug in the limit of integration.
That is fine. I tried wolfram and it blew up :(. I guess it doesn't know when there is so many variables. I think my calculus teacher is trying to kill us :D.
Look at here. It is basically the same calculation: http://www.phengkimving.com/calc_of_one_real_var/12_app_of_the_intgrl/12_04_finding_vol_by_using_cylind_shells.htm
First substitute \(u=x-h\) to have a nicer integrale \[\int_{-r}^r4\pi(u+h)\sqrt{r^2-u^2}\,du\] Since \(u\sqrt{r^2-u^2}\) is an odd function, then the integral above is reduced into \[4\pi h\int_{-r}^r \sqrt{r^2-u^2}=4\pi h\cdot \text{ area of half circle of radius } r\] \(=4\pi h\cdot \frac{1}{2}\pi r^2=2\pi^2r^2h\)
Thank you, I guess I missed this part of even/odd functions in the integrand, it's not on my book :(.

Not the answer you are looking for?

Search for more explanations.

Ask your own question