anonymous
  • anonymous
find the volume of the solid obtained by rotating the region lying between the curves around the y-axis. y=sinx y=e^x x=pi/2 x=pi
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
watchmath
  • watchmath
\(\int_{\pi/2}^{\pi }2\pi x(e^x-\sin x)\,dx\)
anonymous
  • anonymous
can you help me with the steps?
amistre64
  • amistre64
the graph doesnt makes sense ......
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
you appear to have a boundary between boundaries
amistre64
  • amistre64
or, that means that you spin it around the y axis; the part that is between ..got it
amistre64
  • amistre64
1 Attachment
amistre64
  • amistre64
if so; shelling is fine; 2pi {S} (xe^x - xsin(x)) dx ; [pi/2, pi]
amistre64
  • amistre64
but it might be uglier than the disc method to integrate
amistre64
  • amistre64
e^x =y x = ln(y); is ln^2(y) easy to integrate? havent tried it meself lol
amistre64
  • amistre64
http://www.wolframalpha.com/input/?i=int%28pi%28ln%28y%29%29^2%29dy+from+0+to+1 says its 2pi for that bit :)
amistre64
  • amistre64
thnx :)
anonymous
  • anonymous
i have couple more review questions can you help me amistre64?
amistre64
  • amistre64
i can...maybe

Looking for something else?

Not the answer you are looking for? Search for more explanations.