• jhonyy9
- let a,b >=1 and n>=3 numbers from the set of natural numbers N , - how can prove it that always for any value of n exist numbers a and b such that this equation a+b+1=n is true ? - is this prove with reductio ad absurdum correct ? in a reducto ad absurdum argument, we assume the opposite is true. in this case, that would be: for some natural number n >=3 there are no natural numbers a >=1, b >=1 with a+b+1 = n. we don't know what n may be (except that it is greater or equal 3). since n >=3, n - 1 >=2. since n - 1 >=2, (n - 1)/2 >=1. (n - 1)/2 + (n - 1)/2 + 1 = (n - 1) + 1 = n.
Mathematics
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

Looking for something else?

Not the answer you are looking for? Search for more explanations.