• anonymous
Consider a solid whose base is a circle of radius r, and which has all cross-sections perpendicular to a particular diameter as equilateral triangles. Find an expression for A(x), the cross-sectional area of the slice. We did this question in class, so I have the answer, but we went through it really fast so I didn't get it. Now, doing it again, I'm not getting the right answer. What I did: A typical slice has sides 2√(r²-x²) A(x) = 1/2 * base * height base = 2√(r²-x²) height, I used sine rule and got 2√3 √(r²-x²) Which gives me A(x) = 2√3 (r² - x²) It should be √3 (r² - x²) Help please?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
what is x?
  • watchmath
The height should be \(\sqrt{3}\sqrt{r^2-x^2}\). Remember you only use half of the base when you do the sine rule.

Looking for something else?

Not the answer you are looking for? Search for more explanations.