anonymous
  • anonymous
use the demoivre's theorem to find the answer (1-i)^11
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
i think its -10(1+i) demoivre's theorem usually involves sin and cos though ??
anonymous
  • anonymous
yes it involves sin theta and cos theta
anonymous
  • anonymous
u r not sure about the answer???

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

dumbcow
  • dumbcow
no not positive but if you expand it out (1-i)^3 = -2(1+i) (1-i)^5 = -4(1+i) .... just continue the pattern
anonymous
  • anonymous
can u tell me plz how this term can be open (/22)^11 underroot 2 with the power of 11
dumbcow
  • dumbcow
\[\sqrt{2}^{11}\] ???
anonymous
  • anonymous
\[(1-i) = \sqrt{2} (\cos(-\frac{\pi}{4}) + isin(-\frac{\pi}{4}) )\]
anonymous
  • anonymous
in polar form
anonymous
  • anonymous
which can be expressed in exponential form as \[\sqrt{2} e^{ -\frac{i \pi}{4} }\]
anonymous
  • anonymous
demoives theorm states that \[z^n = [r e^{i \theta}]^n = r^n e^{i n \theta } = r^n ( \cos(n \theta ) + i \sin(n \theta) )\]
anonymous
  • anonymous
therefore \[(1-i)^{11} = (\sqrt{2})^{11} e^{ -11 \times \frac{\pi}{4}}\]
anonymous
  • anonymous
now , get the angle back into the range -pi
anonymous
  • anonymous
if you add 2pi to the angle , then that will make the angle -3pi/4 , which is in the range that we want
anonymous
  • anonymous
if you add 2pi to the angle , then that will make the angle -3pi/4 , which is in the range that we want
anonymous
  • anonymous
so answer= \[(\sqrt{2})^{11} e^{-\frac{3\pi i }{4}} = (\sqrt{2})^{11} (\cos(-\frac{3 \pi}{4}) + isin( - \frac{3\pi}{4}) )\]
anonymous
  • anonymous
\[= (\sqrt{2})^{11} ( -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} ) = - (\sqrt{2})^{10} (1+i) \]
anonymous
  • anonymous
and\[(\sqrt{2})^{10} = 2^5=32 \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.