use the demoivre's theorem to find the answer (1-i)^11

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

use the demoivre's theorem to find the answer (1-i)^11

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

i think its -10(1+i) demoivre's theorem usually involves sin and cos though ??
yes it involves sin theta and cos theta
u r not sure about the answer???

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

no not positive but if you expand it out (1-i)^3 = -2(1+i) (1-i)^5 = -4(1+i) .... just continue the pattern
can u tell me plz how this term can be open (/22)^11 underroot 2 with the power of 11
\[\sqrt{2}^{11}\] ???
\[(1-i) = \sqrt{2} (\cos(-\frac{\pi}{4}) + isin(-\frac{\pi}{4}) )\]
in polar form
which can be expressed in exponential form as \[\sqrt{2} e^{ -\frac{i \pi}{4} }\]
demoives theorm states that \[z^n = [r e^{i \theta}]^n = r^n e^{i n \theta } = r^n ( \cos(n \theta ) + i \sin(n \theta) )\]
therefore \[(1-i)^{11} = (\sqrt{2})^{11} e^{ -11 \times \frac{\pi}{4}}\]
now , get the angle back into the range -pi
if you add 2pi to the angle , then that will make the angle -3pi/4 , which is in the range that we want
if you add 2pi to the angle , then that will make the angle -3pi/4 , which is in the range that we want
so answer= \[(\sqrt{2})^{11} e^{-\frac{3\pi i }{4}} = (\sqrt{2})^{11} (\cos(-\frac{3 \pi}{4}) + isin( - \frac{3\pi}{4}) )\]
\[= (\sqrt{2})^{11} ( -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} ) = - (\sqrt{2})^{10} (1+i) \]
and\[(\sqrt{2})^{10} = 2^5=32 \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question