anonymous
  • anonymous
Why does the electron's lie in the orbit only , but not in the nucleus?
Chemistry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Your first question is answered by quantum theory. The "orbits" of the electron in Hydrogen are quantized. The only way an electron can change its energy is by jumping between levels and emitting light. Once the electron sits in the ground state of atom, the lowest energy state, it can't go down anymore because of quantum effects. For more complicated atoms, all the discrete states up to a certain energy are filled, and the atom is stable because of the Pauli exclusion principle which tells you that no two electrons can be in the same quantum state. To answer your second question, remember that as you compress the atom you are applying an additional force, but the force from the nucleus also gets stronger as the electron moves further in. The system will find a new equilibrium and the electron will not collapse into the nucleus in general. In practice, you could alter the orbit with electric and magnetic fields, but the electron isn't going to crash into the nucleus.

Looking for something else?

Not the answer you are looking for? Search for more explanations.