anonymous
  • anonymous
write an equation for the parabola vertex (9,4), focus (9,12)
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

amistre64
  • amistre64
a = 8 soo and this opens to the .....left y^2 = 4ax
amistre64
  • amistre64
opps, opens up lol
amistre64
  • amistre64
4ay = x^2 4(8)y = x^2 32y = x^2 then account for the offcenter

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
32(y-4) = (x-9)^2 y = (1/32)(x-9)^2 +4
anonymous
  • anonymous
Use \[(x-h)^{2} = 4p(y-k) \] where h is the x coordinate of the focus or vertex (both are the same), k is the y coordinate of the vertex and p is the difference between the two y values so... \[(x-9)^{2} = 4(8)(y-4) \] simplifies to \[x ^{2} -18x +81 = 32y - 128\] clean it up to get \[y = 1/32(x ^{2} -18x + 209)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.