solve using the trapezoidal rule:

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

solve using the trapezoidal rule:

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{0}^{1}\sqrt{1-x ^{2}}\] by dividing into 5 parts
couldn't you use trig substitution = sin^-1 (x) +C
i know its a pretty easy question but my attempts don't match the answers at the back. this is what i did: \[\int\limits_{0}^{1}\sqrt{1-x ^{2}}\approx \int\limits_{0}^{1/5}\sqrt{1-x ^{2}}+ \int\limits_{1/5}^{2/5}\sqrt{1-x ^{2}}+ \int\limits_{2/5}^{3/5}\sqrt{1-x ^{2}}+ \int\limits_{3/5}^{4/5}\sqrt{1-x ^{2}}+ \int\limits_{4/5}^{1}\sqrt{1-x ^{2}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

but i have to use the trapezoidal rule as i will be assessed on it lol
then following from above : \[\approx1/10(1+\sqrt{24}/5)+1/10(\sqrt{24}/5+\sqrt{21}/5)+1/10(\sqrt{21}/5+4/5)+1/10(4/5+3/5)+1/10(3/5+0)\]
oh ok http://en.wikipedia.org/wiki/Trapezoidal_rule = (1)(1/2) = 1/2
i actually understand the rule but i cant see where ive gone wrong in my working after attempting numerous times
hi can u help me after her
yeh, simple
\[A= \frac{h}{2} ( f(x0) + 2 [ f(x1) + f(x2) + .....+ f(x(n-1)] + f(xn) ) \]
general trapezodial rule
which is the same as \[\int\limits_{a}^{b}f(x)\approx b-a/2(f(a)+f(b))\]
i used that
by dividing into 5 intervals as it asks
now, diving into 5 sections means using 6 function values
i used from 0, 1/5, 2/5, 3/5, 4/5, 1
god this is slow, im going to post the answer as a question
ok lol
if it makes a difference this is the exact wording of the question use the trapezoidal rule with five function values to estimate \[\int\limits_{0}^{1}\sqrt{1-x ^{2}}\] to four decimal places

Not the answer you are looking for?

Search for more explanations.

Ask your own question