• jhonyy9
- is this prove correct with math induction ? -let a,b and n natural numbers from N, a>=1,b>=1,n>=3 - n=a+b+1 - how may be prove it that always for any value of n will be one a and one b that this equation is true ? - Assume there exists a natural number k such that k >= 3 and there exists a pair of natural numbers, a_k and b_k, such that (a_k + b_k + 1) = k. Let a_(k+1) = a_k. So, a_(k+1) is a natural number. Let b_(k+1) = (b_k) + 1. So, b_(k+1) is a natural number. (a_(k+1) + b_(k+1) + 1) = [a_k + ((b_k) + 1) + 1] = [(a_k + b_k + 1) + 1] = (k + 1). And (k + 1) is a natural number >= 3. So,
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
  • watchmath
No need induction. Just choose \(a=n-2\) and \(b=1\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.