how do i simplify a radical expression that has a variable in it?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

how do i simplify a radical expression that has a variable in it?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\sqrt[3]{x^7}\]
make it a rational exponent :)
\[x^{7/3}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

x^(7/3) = x^(6/3 + 1/3) x^2 cbrt(x)
it needs to be simplified not solved
that is simplified; in order to 'solve' we would have said x = some number
to simplify just means to write it in another way
cbrt(x^7) = x^2 cbrt(x)
ok thanks but all the answers have either a 3 and an x or a 2 and a 3 and an x
maybe it more accurate to write it like this: cbrt(x^7) <=> x^2 cbrt(x) :)
\[\sqrt[3]{x^7} <=> x^2 \sqrt[3]{x}\]
thank you so much
yw :)
\[\frac4{9-\sqrt6}\]
rationalize the denimonator
you gotta multiply by the conjugate; which is just cahngeing that - into a +
4 (9+sqrt(6)) 4(9+sqrt(6)) ----------- = ----------- 81 -6 75
multiply top AND bottom by the conjugate ;)
thx
yw :) if you post a new question in the question box, more people will get a chance to help and you wont run the risk of me not seeing it in this post :)
\[\log_{5}75-\log_{5}3 \]
write the expression as a single logarithm whose coefficient is 1?
log(a) - log(b) = log(a/b) so, log5(75) - log(3) = log5(75/3) = log5(25)
\[\sqrt{9x+22}=x \]
^2 both sides to get: 9x +22 = x^2 0 = x^2 -9x +22 0 = (x-11)(x+2) x = 11 and -2 ; but we gotta dbl check because this way can have fake results: sqrt(9(11)+22) ?= 11 sqrt(99+22) ?= 11 sqrt(121) ?= 11 11 = 11 ; that ones good -------------------------------- sqrt(9(-2) +22) = -2 .... aint no way that one works lol x = 11 is the answer
u r a math god!!
more of a math demigod lol
lol
my indian name is "runs with scissors" ....
\[\log_{9}25 \]
calculator keeps giving me the wrong answer
change of base it.... is my guess
ln(25) ----- = answer ln(9)
1.464.... maybe?
thanks that worked
it should :)
spose we have 9^x = 25 log(9^x) = log(25) x log(9) = log(25) x = log(25)/log(9) x = log9(25) its all good

Not the answer you are looking for?

Search for more explanations.

Ask your own question