Find this one.... {[1+(x-1)/2]/1-1/x}-x/(x-1) --------------------------- x/2 I really hope u'll get it

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find this one.... {[1+(x-1)/2]/1-1/x}-x/(x-1) --------------------------- x/2 I really hope u'll get it

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Thank you for the star.
Uw :)...any idea abt this 1 ?
Let me give it a try

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Thnx ^_^ :)
\[\frac{x-2}{x-1}\]
@dumbcow Will you please explain me how did u get that? Please...
just do it step by step, combine fractions and use property of dividing fractions (Flip and multiply)
\[\frac{((1+(x-1)/2)/1-1/x)-x/(x-1)}{\frac{x}{2}}=\frac{((-2+x) (-1+x))}{ x^2} \]
thnx :)
In a rush to get out a solution I did not verify the result. ie: x=17 shows that the left side and the right side are not equal. Recalculated and it appears that at first glance that the fraction is equal to one.
it's ok :) I'll check it tomorrow :):):) Thnx anyway
dumbcow can u help me
The fraction is equal to 1. The problem fraction with the braces and brackets changed to parentheses:\[\frac{((1 + (x - 1)/2)/1 - 1/x) - x/(x - 1)}{\frac{x}{2}} \]Multiply the numerator by the reciprocal of the denominator adding surrounding parentheses to the numerator.\[\frac{2}{x}(((1 + (x - 1)/2)/1 - 1/x) - x/(x - 1)) \]The following is a step by step sequence of fraction modifications, mainly simplifications to individual terms.\[\frac{2}{x}\left(((1+(x-1)/2)/1-1/x)-\frac{x}{-1+x}\right) \]\[\frac{2}{x}\left(\left(\left.\frac{1+x}{2}\right/1-1/x\right)-\frac{x}{-1+x}\right) \]\[\frac{2}{x}\left(\left(\frac{1+x}{2}/\frac{-1+x}{x}\right)-\frac{x}{-1+x}\right) \]\[\frac{2}{x}\left(\frac{x (1+x)}{2 (-1+x)}-\frac{x}{-1+x}\right) \]Multiply through by 2/x\[\left(\frac{2}{x}\right)\left(\frac{x (1+x)}{2 (-1+x)}\right)-\left(\frac{x}{-1+x}\right)\left(\frac{2}{x}\right) \]Expand the products on each side of the minus sign and simplify.\[\frac{1}{-1+x}+\frac{x}{-1+x}-\frac{2}{-1+x} \]\[\frac{1+x-2}{-1+x} \]\[\frac{-1+x}{-1+x}=1 \]
Wooooow...Thanks a loooooooooooooooooooooooooooot!!!!!!!!! :) ^_^ Thanks :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question