angela210793
  • angela210793
Find this one.... {[1+(x-1)/2]/1-1/x}-x/(x-1) --------------------------- x/2 I really hope u'll get it
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Thank you for the star.
angela210793
  • angela210793
Uw :)...any idea abt this 1 ?
anonymous
  • anonymous
Let me give it a try

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

angela210793
  • angela210793
Thnx ^_^ :)
dumbcow
  • dumbcow
\[\frac{x-2}{x-1}\]
angela210793
  • angela210793
@dumbcow Will you please explain me how did u get that? Please...
dumbcow
  • dumbcow
just do it step by step, combine fractions and use property of dividing fractions (Flip and multiply)
anonymous
  • anonymous
\[\frac{((1+(x-1)/2)/1-1/x)-x/(x-1)}{\frac{x}{2}}=\frac{((-2+x) (-1+x))}{ x^2} \]
angela210793
  • angela210793
thnx :)
anonymous
  • anonymous
In a rush to get out a solution I did not verify the result. ie: x=17 shows that the left side and the right side are not equal. Recalculated and it appears that at first glance that the fraction is equal to one.
angela210793
  • angela210793
it's ok :) I'll check it tomorrow :):):) Thnx anyway
toxicsugar22
  • toxicsugar22
dumbcow can u help me
anonymous
  • anonymous
The fraction is equal to 1. The problem fraction with the braces and brackets changed to parentheses:\[\frac{((1 + (x - 1)/2)/1 - 1/x) - x/(x - 1)}{\frac{x}{2}} \]Multiply the numerator by the reciprocal of the denominator adding surrounding parentheses to the numerator.\[\frac{2}{x}(((1 + (x - 1)/2)/1 - 1/x) - x/(x - 1)) \]The following is a step by step sequence of fraction modifications, mainly simplifications to individual terms.\[\frac{2}{x}\left(((1+(x-1)/2)/1-1/x)-\frac{x}{-1+x}\right) \]\[\frac{2}{x}\left(\left(\left.\frac{1+x}{2}\right/1-1/x\right)-\frac{x}{-1+x}\right) \]\[\frac{2}{x}\left(\left(\frac{1+x}{2}/\frac{-1+x}{x}\right)-\frac{x}{-1+x}\right) \]\[\frac{2}{x}\left(\frac{x (1+x)}{2 (-1+x)}-\frac{x}{-1+x}\right) \]Multiply through by 2/x\[\left(\frac{2}{x}\right)\left(\frac{x (1+x)}{2 (-1+x)}\right)-\left(\frac{x}{-1+x}\right)\left(\frac{2}{x}\right) \]Expand the products on each side of the minus sign and simplify.\[\frac{1}{-1+x}+\frac{x}{-1+x}-\frac{2}{-1+x} \]\[\frac{1+x-2}{-1+x} \]\[\frac{-1+x}{-1+x}=1 \]
angela210793
  • angela210793
Wooooow...Thanks a loooooooooooooooooooooooooooot!!!!!!!!! :) ^_^ Thanks :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.