A square with sides of length s is inscribed in an equilateral triangle with sides of length t. Find the exact ratio of the area of the equilateral triangle to the area of the square.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A square with sides of length s is inscribed in an equilateral triangle with sides of length t. Find the exact ratio of the area of the equilateral triangle to the area of the square.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\frac{6}{2+\sqrt{3}}\)
how did you get that?
cow, remember me? i need helped, wit hthe problem you helped me yesterday

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yeah
hey dumbcow lol can u help me lout with my question
Area of square is s^2 Area of equilateral triangle is \[\frac{\sqrt{3}}{4} t ^{2}\] to get ratio we need t in terms of s if we use the right triangle to left of square with side opposite of 60 degree angle the edge of the square of length s and adjacent side length (t-s)/2 tan 60 = opp/adj = 2s/(t-s) = sqrt(3) solve for t \[t = \frac{2+\sqrt{3}}{\sqrt{3}} s\] substitute this into Area equation \[A = \frac{\sqrt{3}}{4}*\frac{(7+4\sqrt{3})}{3} s ^{2}\] \[A = \frac{12 + 7\sqrt{3}}{12} s ^{2}\] divide by area of square s^2 to get ratio \[=\frac{12+7\sqrt{3}}{12}\]
dumbcow right, I forgot to multiplu by two here :tan 60 = 2s/(t-s) (I did s/(t-s) )

Not the answer you are looking for?

Search for more explanations.

Ask your own question