• anonymous
One fine morning it begins to snow at a constant rate. A snow plow is a bulldozer specifically ddesigned to clear snow. At 6:00am, a snow plow starts to clear a straight road covered by snow. The plow can remove a fixed volume of snow per unit time, so that we can say that its speed is inversely proportional to the depth of the snow. If the plow covered twice as much distance in the first hour as the second hour, can you guess what time it started snowing? i) 5:22:55 am ii) 5:19:00 am iii) 5:10:01 am
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • dumbcow
answer is (i) 5:22:55 am Let x be time it snows before 6am snow is falling at constant rate R depth of snow is proportional to amount of time its been snowing depth = Rt speed is inversely proportional to depth, s = k/Rt distance = speed*time since speed is constantly changing use integration to find distance\[\frac{k}{R}\int\limits_{x}^{x+1}\frac{1}{t} dt = 2\frac{k}{R}\int\limits_{x+1}^{x+2}\frac{1}{t} dt\] 1st integral finds distance for first hour, 2nd integral find distance for 2nd hour the k/R will cancel leaving \[\ln \frac{x+1}{x} = 2\ln \frac{x+2}{x+1}\] make both sides power of e\[\frac{x+1}{x} = \frac{(x+2)^{2}}{(x+1)^{2}}\] cross multiply and simplify\[x^{2} +x -1 =0\] quadratic formula results in\[x = \frac{-1\pm \sqrt{5}}{2}\] x >0 because it represents positive time x = .618 hours = 37.08 min

Looking for something else?

Not the answer you are looking for? Search for more explanations.