Simplify: |1-a+b|-|a-b| -------------- |b-a| +a

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Simplify: |1-a+b|-|a-b| -------------- |b-a| +a

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\frac{1-a+b-a+b}{b-a+a} = \frac{1-2a + 2b}{b}\] all you've got to do is simplify by multiplying the sign to the values in brackets and compute ^_^
those aren't brackets :):):):) absolute value :S
hmm , oh right, you're right lol. If you have absolute values, then the signs switch.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

not sure how though? >_< I'm sorry. I know that |b-a| = a-b
but not sure of the one in the denominator.
i'm not sure how to solve this 2.....thnx a lot anyway :) ^_^
numerator*
Alright, let me see if I can make it simpler, |4x| = 4x, |-4x| = 4x |4x-3|= 3-4x |2a +b| = 2a+b makes any sense?
yea it does...thnx :)so i just switch signs...nothing else?
looks like it :) np dear ^_^
you switch signs only when you have a negative inside with another variable, others stay the same ^_^
hmm how abt -|a-b|???? is it a-b?
first find |a-b| = b-a then multiply it by (-) = -(b-a) = a-b LOL it's the same thing :)
so yes ^_^
^_^ Tjnx a lot :):):) ^_^
np dear :)
thnx*
For equations having terms with absolute value, you have to calculate twice, once if the value inside the brackets is positive (non-negative in a broader sense), and then if the value inside the brackets is negative. So, you have to think about cases, when (a-b)<0, when 0<=(a-b)<=1 and when (a-b)>1. Now the solution. 1st case: when (a-b)<0 or a1, then |a-b| = a-b, |1-a+b| = |1-(a-b)| = a-b-1, |b-a| = a-b. So the simplification will be 1/(b-2a). Enjoy. :)
Oh thanks a lot :):):)

Not the answer you are looking for?

Search for more explanations.

Ask your own question