angela210793
  • angela210793
Simplify: |1-a+b|-|a-b| -------------- |b-a| +a
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{1-a+b-a+b}{b-a+a} = \frac{1-2a + 2b}{b}\] all you've got to do is simplify by multiplying the sign to the values in brackets and compute ^_^
angela210793
  • angela210793
those aren't brackets :):):):) absolute value :S
anonymous
  • anonymous
hmm , oh right, you're right lol. If you have absolute values, then the signs switch.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
not sure how though? >_< I'm sorry. I know that |b-a| = a-b
anonymous
  • anonymous
but not sure of the one in the denominator.
angela210793
  • angela210793
i'm not sure how to solve this 2.....thnx a lot anyway :) ^_^
anonymous
  • anonymous
numerator*
anonymous
  • anonymous
Alright, let me see if I can make it simpler, |4x| = 4x, |-4x| = 4x |4x-3|= 3-4x |2a +b| = 2a+b makes any sense?
angela210793
  • angela210793
yea it does...thnx :)so i just switch signs...nothing else?
anonymous
  • anonymous
looks like it :) np dear ^_^
anonymous
  • anonymous
you switch signs only when you have a negative inside with another variable, others stay the same ^_^
angela210793
  • angela210793
hmm how abt -|a-b|???? is it a-b?
anonymous
  • anonymous
first find |a-b| = b-a then multiply it by (-) = -(b-a) = a-b LOL it's the same thing :)
anonymous
  • anonymous
so yes ^_^
angela210793
  • angela210793
^_^ Tjnx a lot :):):) ^_^
anonymous
  • anonymous
np dear :)
angela210793
  • angela210793
thnx*
anonymous
  • anonymous
For equations having terms with absolute value, you have to calculate twice, once if the value inside the brackets is positive (non-negative in a broader sense), and then if the value inside the brackets is negative. So, you have to think about cases, when (a-b)<0, when 0<=(a-b)<=1 and when (a-b)>1. Now the solution. 1st case: when (a-b)<0 or a1, then |a-b| = a-b, |1-a+b| = |1-(a-b)| = a-b-1, |b-a| = a-b. So the simplification will be 1/(b-2a). Enjoy. :)
angela210793
  • angela210793
Oh thanks a lot :):):)

Looking for something else?

Not the answer you are looking for? Search for more explanations.