anonymous
  • anonymous
find the derivative of x/((x^2)+1)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
myininaya
  • myininaya
f'(x)=[(derivativetop)(bottom)-(deritiavebottom)(top)]/(bottom)^2 =[(1)(x^2+1)-(2x)(x)](x^2+1)^2 =(x^2+1-2x^2)/(x^2+1)^2 =(-x^2+1)/(x^2+1)^2
anonymous
  • anonymous
thanks. it's been ages since i had to remember derivation rules.
myininaya
  • myininaya
np you can also rewrite f(x) and not use the quotient rule f(x)=x(x^2+1)^(-1) f'(x)=1(x^2+1)^(-1)+x(-1)(2x)(x^2+1)^(-2) =1/(x^2+1)-2x^2/(x^2+1)^2 =[(x^2+1)-2x^2]/(x^2+1)^2 =(-x^2+1)/(x^2+1)^2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
this one involve chain rule and product rule if you like this more there is no need for the quotient rule lol
myininaya
  • myininaya
since any quotient can be written as a product

Looking for something else?

Not the answer you are looking for? Search for more explanations.