anonymous
  • anonymous
y₁ Let U:= { y₂ : y₁=y₂=y₃+y₄ } y₃ y₄ a) Show U is a subspace of F⁴ b) Find a basis for U and prove that it is in fact a basis
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

watchmath
  • watchmath
Is that y1+y2=y3=y4 ?
watchmath
  • watchmath
I mean y1+y2=y3+y4?
anonymous
  • anonymous
No its y1=y2=y3+y4

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

watchmath
  • watchmath
Define a linear map \(T:F^4\rightarrow F^2\) given by \(T(y_1,y_2,y_3,y_4)=(y_1-y_2,y_2-y_3-y_4)\). Notice that \(\ker t\) is the collection of \(((y_1,y_2,y_3,y_4)^T\) such that \(y_1-y_2=0\) and \(y_2-y_3-y_4=0\). Hence \(\ker T=U\). Therefore \(U\) is a subspace of (F^4\). We claim that \(B=\{(1,1,0,1)^T,(1,1,1,0)^T\}\) is a basis of \(U\). One can easily check that each \(B\subset U\). Suppose \(s(1,1,0,1)^T+t(1,1,1,0)=0\) Then \((s+t,s+t,t,s)=(0,0,0,0)\) By looking at the last two coordinates, we have \(s=t=0\). Hence \(B\) is linearly independent. You just need to prove that \(B\) spans \(U\) (give it a try! :) )

Looking for something else?

Not the answer you are looking for? Search for more explanations.