• anonymous
The number of bacteria in a certain population increases 4.5% according to an exponential growth model, with a growth rate of per hour. How many hours does it take for the size of the sample to double? Do not round any intermediate computations, and round your answer to the nearest hundredth.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
you need to solve \[e^{.045t}=2\] for t. takes two steps \[.045t=ln(2)\] \[t=\frac{ln(2)}{.045}\] then use a calculator to get \[t=15.403\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.