anonymous
  • anonymous
A 40 gram sample of a radioactive isotope decays at a rate of 2.5% annually. What is the exponential function that models the decay? What is the half life of this isotope? How much will be present after 65 years?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
\[P _{t} = P _{0} (1-r)^{kt}\] P0 = 40 r = 0.025 k = constant t = time
dumbcow
  • dumbcow
in this case k=1 for half life set Pt = 20 and solve for t
anonymous
  • anonymous
how exactly would you do that?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

dumbcow
  • dumbcow
use logs \[20 = 40(.975)^{t}\] \[\frac{\log_{} (1/2) }{\log_{} (0.975)} = t\]
anonymous
  • anonymous
i dont quite understand

Looking for something else?

Not the answer you are looking for? Search for more explanations.