anonymous
  • anonymous
Given that a, b, c are not all zero, find parametric equations for a line in R^3 that passes through the point (x0,y0,z0) and is perpendicular to the line x=x0+at, y=y0+bt, z= z0+ct
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
We have the direction of the line given represented by the vector We need a vector perpendicular to that, For two vectors to be perpendicular we want the dot product to be 0 .=0 ad+be+cf=0 by observation one choice is d=bc,e=ac,f=-2ba. We can check this abc+bac-2cba=2abc-2abc=0 now we have the proper direction, and we know it passes through the point (x0,y0,z0) so we can parametrize it as following: x=x0+(bc)t y=y0+(ac)t z=z0+(-2ba)t

Looking for something else?

Not the answer you are looking for? Search for more explanations.