A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 5 years ago

How can the linear combination of two non singular and linearly independent vectors encompass the whole of 2D euclidean space?

  • This Question is Closed
  1. Owlfred
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Hoot! You just asked your first question! Hang tight while I find people to answer it for you. You can thank people who give you good answers by clicking the 'Good Answer' button on the right!

  2. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    You asked how so I am assuming the question isn't why you need specifically, 2 linearly independent vectors. Well consider the independent vectors v1 and v2 being (a,0) and (0,b) . I can get any vector (c,d) by multiplying v1 and v2 by some 2 scalar values and adding v1 and v2 together:\[\alpha _{1}(a,0)+\alpha _{2}(0,b) = (\alpha _{1}a, \alpha _{2}b)=(c,d)\] The simplest case to consider is the elementary vectors above with a and b both equaling 1. Then you just need to specify two alpha values.

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.