anonymous
  • anonymous
How can the linear combination of two non singular and linearly independent vectors encompass the whole of 2D euclidean space?
MIT 18.06 Linear Algebra, Spring 2010
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Owlfred
  • Owlfred
Hoot! You just asked your first question! Hang tight while I find people to answer it for you. You can thank people who give you good answers by clicking the 'Good Answer' button on the right!
anonymous
  • anonymous
You asked how so I am assuming the question isn't why you need specifically, 2 linearly independent vectors. Well consider the independent vectors v1 and v2 being (a,0) and (0,b) . I can get any vector (c,d) by multiplying v1 and v2 by some 2 scalar values and adding v1 and v2 together:\[\alpha _{1}(a,0)+\alpha _{2}(0,b) = (\alpha _{1}a, \alpha _{2}b)=(c,d)\] The simplest case to consider is the elementary vectors above with a and b both equaling 1. Then you just need to specify two alpha values.

Looking for something else?

Not the answer you are looking for? Search for more explanations.