anonymous
  • anonymous
lim (e^(-6 x)cos(x)) x-> infinity
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
0
anonymous
  • anonymous
is it e^(-6 x) *cos(x) or e^((-6 x)cos(x))
anonymous
  • anonymous
\[\frac{cos(x)}{e^{6x}}\] cosine is bounded by one and the denominator goes to infinity lickedy split

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the first one
anonymous
  • anonymous
confused. what is the difference between those two Andras?
anonymous
  • anonymous
its e^(-6x) * (cosx)
anonymous
  • anonymous
\[cosx/e ^{6x}\]
anonymous
  • anonymous
ans is zero
anonymous
  • anonymous
could you explain it please
anonymous
  • anonymous
lim x---> infinity= any value in the interval [-1.1] say A lim x---> infinity e^6x=infinity A/infinity=0
anonymous
  • anonymous
thankyou, how do i give a medals for the answers
anonymous
  • anonymous
click good answer against the name :P
anonymous
  • anonymous
see, i awarded to u :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.