Use identities (no calculators) to find the exact value for (sin 38)(sin 112) -( cos 38)(cos 112).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Use identities (no calculators) to find the exact value for (sin 38)(sin 112) -( cos 38)(cos 112).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

same trick as before. this is the addition angle formula for cosine{ \[cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\]
here \[a=38,b=112, a+b=150\]
well on careful inspection i see that this is it's negative, but that is ok \[cos(150)=-\frac{\sqrt{3}}{2}\] so your answer here is \[\frac{\sqrt{3}}{2}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Why does the negative turn to a positive?
oh because the "addition angle" formula is not the one written in the question. it is its negative

Not the answer you are looking for?

Search for more explanations.

Ask your own question