One number is 44 more than twice another. Their product is 44 more than twice their sum. Find the numbers x and y. (Assume x < y.)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

One number is 44 more than twice another. Their product is 44 more than twice their sum. Find the numbers x and y. (Assume x < y.)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
m = 44+2n mn = 44+2(m+n)
y=44+2x y=2(x+y)+44 Solve system using substitution or elimination

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

mn = 44 +2m+2n ; yet 2n = m-44 mn = 44 +2m +2m -88 mn = -44 +4m 44 = mn +4m 44 = m(n+4) m = 44/(n+4) ; n!= -4
m = 44+2n = 44/(n+4) (44+2n)(n+4) = 44 44n +176 +2n^2 +8n = 44 2n^2 +52n +176-44 = 0 2n^2 +52n +132 = 0
2(n^2 +26n + 66) = 0 n^2 +26 = -66 (n+13) = sqrt(-66 + 169) n = -13 +- sqrt(103)
htats prolly wrong lol
it is. i know there's no square root for any of the problems. this one is killing me! haha
one of the numbers is 0.
m = 44+2n mn = 44+2(m+n) these are good equations right?
if one of the numbers is 0; then their product is 0
y=44+2x y=2(x+y)+44 The solution to this system is x=-22 y=0
how is y a product in that?
-22 is a good solution, I just cant see how you interpret the information..
we'll skip that one. lol

Not the answer you are looking for?

Search for more explanations.

Ask your own question