anonymous
  • anonymous
what is the area bounded by y=(cos x) e^sinx and the x axis between x=o and x=pi/2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
you need to integrate it first that will be e^sinx and than take : e^sin(pi/2)- e^sin(0) that is e-1
anonymous
  • anonymous
e-1, or e^-1
anonymous
  • anonymous
e-1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
as sin(pi/2)=1 sin0=0 and e^0=1
anonymous
  • anonymous
ohh okay
anonymous
  • anonymous
intergrate \[\int\limits_{?}^{?}\]3e^7x dx.
anonymous
  • anonymous
3/7 e^7x +C
anonymous
  • anonymous
express log13 in therms of nautural logrithms 7
anonymous
  • anonymous
wooah sorry log_7 13
anonymous
  • anonymous
\[\log_{7} 13\] ??
anonymous
  • anonymous
yes :)
anonymous
  • anonymous
log7(13)=ln(13)/ln7
anonymous
  • anonymous
I had to search that up, did not remember :-)
anonymous
  • anonymous
okay so all i have left to do is word problems that are suber long :/
anonymous
  • anonymous
good luck for it
anonymous
  • anonymous
thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.